Parameter identification in particle models
نویسندگان
چکیده
منابع مشابه
Identification problems in distributed parameter neuron models
-One-dimensional cable theory provides the theoretical framework to evaluate the role of linear electrical membrane properties and dendritic geometry in neuronal signal reception and processing. This article presents the basic physical principles as well as mathematical problems arising in neuronal modelling. The main types of passive dendritic neuron models are reviewed and their use in explor...
متن کاملParameter identification in Markov chain choice models
This work studies the parameter identification problem for the Markov chain choice model of Blanchet, Gallego, and Goyal used in assortment planning. In this model, the product selected by a customer is determined by a Markov chain over the products, where the products in the offered assortment are absorbing states. The underlying parameters of the model were previously shown to be identifiable...
متن کاملParticle Swarm Optimization Based Parameter Identification Applied to a Target Tracker Robot with Flexible Joint
This paper focuses on parameter identification of a target tracker robot possessing flexible joints using particle swarm optimization (PSO) algorithm. Since, belt and pulley mechanisms are known as flexible joints in robotic systems, their elastic behavior affecting a tracker robot is investigated in this work. First, dynamic equations governing the robot behavior are extracted taking into acco...
متن کاملParameter Estimation in General State-Space Models using Particle Methods
Particle filtering techniques are a set of powerful and versatile simulation-based methods to perform optimal state estimation in nonlinear non-Gaussian state-space models. If the model includes fixed parameters, a standard technique to perform parameter estimation consists of extending the state with the parameter to transform the problem into an optimal filtering problem. However, this approa...
متن کاملOn Particle Methods for Parameter Estimation in State-Space Models
Nonlinear non-Gaussian state-space models are ubiquitous in statistics, econometrics, information engineering and signal processing. Particle methods, also known as Sequential Monte Carlo (SMC) methods, provide reliable numerical approximations to the associated state inference problems. However, in most applications, the state-space model of interest also depends on unknown static parameters t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Hydrology and Hydraulics
سال: 1993
ISSN: 0931-1955,1435-151X
DOI: 10.1007/bf01581420